Summer Block 3

Time

Small steps

Step 1 Roman numerals to 12

Small steps

Step $9 \quad$ Hours and minutes - use durations

Step 10	Minutes and seconds
Step 11	Units of time
Step 12	Solve problems with time

Roman numerals to 12

Notes and guidance

This small step introduces children to Roman numerals and the Roman number system. They focus only on Roman numerals for numbers 1 to 12 , using the context of a clock face.

By the end of this step, children should understand that numbers in the Roman number system follow these principles: letters are not usually written four times (for example, 4 is written as IV, instead of IIII); if a lower value digit is written to the left of a higher value digit, it is subtracted (for example, IV $=5-1$) and if it is written to the right, it is added (for example, $\mathrm{VI}=5+1$).

Children recap how to read and write "o'clock" and "half past" the hour. Give them the opportunity to create times using individual clocks with moveable hands.

Things to look out for

- Children may write 4 as IIII or 9 as VIIII.
- Children may add numerals, instead of interpreting the values based on their position, for example interpreting IX as 11, rather than 9
- When marking the hour hand on a clock to show half past 7 , children may draw the hand pointing to 7 , rather than halfway between 7 and 8

Key questions

- Where have you seen Roman numerals before?
- What is the same/different about representing the numbers 2 and 12 as Roman numerals?
- What is the same/different about writing 4 and 6 as Roman numerals?
- What are the rules of the Roman number system?
- Which is the hour/minute hand?
- Where will the minute hand be at \qquad o'clock?
- Where will the minute hand be at half past \qquad ?

Possible sentence stems

- The letter \qquad represents the number \qquad -
- On the hour, the minute hand points to \qquad
- At half past the hour, the minute hand points to \qquad

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks

Roman numerals to 12

Key learning

- Match the numbers to the Roman numerals.

- Write Roman numerals to complete the clock face.

- Here are two clocks.

What is the same about the clocks?
What is different?

Roman numerals to 12

Reasoning and problem solving

Amir writes the number 9 in Roman numerals.

VIIII

Explain Amir's mistake.
Write 9 in Roman numerals.

Do you agree with Tiny?
Explain your answer.

No

8 o'clock, because the hour hand is pointing at 8

Tell the time to 5 minutes

Notes and guidance

In this small step, children use analogue clocks to tell the time to 5 minutes, building on their learning in Year 2
To begin with, children recap how many minutes there are in an hour. With this knowledge, encourage them to identify why quarters of an hour are equal to 15 minutes and why the 12 intervals around a clock face are each equal to 5 minutes. Partitioning the clock vertically from 12 to 6 may visually support children to recognise whether a time is past or to the hour. As in the previous step, children can physically make times on analogue clocks with moveable hands.
Children may need to practise their 5 times-table to ensure that they can fluently tell the time to 5 minutes.

Things to look out for

- Children may not relate the numbers on the clock face to minutes. For example, when the minute hand is pointing to 4 , they may say that it is 4 minutes past the hour.
- Children may confuse times past and times to the hour.
- If children are not secure in their 5 times-table, they may struggle to fluently identify the number of minutes past or to the hour.

Key questions

- Which is the minute/hour hand?
- Is the minute hand in the first half or second half of the hour?
- If the minute hand is pointing at \qquad , how many minutes is it past the hour?
- If the minute hand is pointing at \qquad how many minutes is it to the hour?
- How else could you say 15 minutes past/to?
- Would you ever say 60 minutes past \qquad ? Why/why not?

Possible sentence stems

- The minute hand is pointing to the \qquad _

This means that the time is said as past/to.

- \qquad $\times 5=$ \qquad , so the time is \qquad past/to \qquad

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks

Tell the time to 5 minutes

Key learning

- Complete the sentences.

There are \qquad minutes in one hour.

There are \qquad minutes in half an hour.

There are \qquad minutes in quarter of an hour.

- Label the clock to show what time would be shown if the minute hand was pointing to each interval. Some have been

- What time is shown on each clock?

- What time is shown on each clock?

- Draw hands to show the time on each clock.

Tell the time to 5 minutes

Reasoning and problem solving

Teddy is telling the time.

No

Is Teddy correct?
Explain your answer.

Yes
There are 55 minutes until 4 o'clock.

Teddy should say it is 5 minutes past 3

Tell the time to the minute

Notes and guidance

In this small step, children build on their previous learning to tell the time to the nearest minute.

This is a good opportunity to reinforce the convention that if the minute hand is pointing before 6 , we use the phrase "past the hour" and if it is pointing after 6, we use the phrase "to the hour". To find out how many minutes past/to the hour a time is, children should identify the 5 -minute interval before, then count individual minutes after the multiple of 5 . For example, to tell the time on an analogue clock showing 23 minutes past 4, children should recognise that this is $4 \times 5=20$, then +3
To support children when telling the time to the hour, a part-whole model can help them to see the number bond to 60

Things to look out for

- Children may count individual minutes until they reach the minute hand, instead of finding the 5 -minute interval before the minute hand and counting on.
- When telling times that are " \qquad minutes to the hour", there are several steps in the process, so children may make errors.

Key questions

- Which is the minute/hour hand?
- Would you say the time shown is "past the hour" or "to the hour"? Why?
- What do you add to \qquad to reach 60?
- How many minutes is it past the hour/to the next hour?
- What method can you use to find the number of minutes past?

Possible sentence stems

- \qquad $\times 5=$ \qquad
\qquad $+$ \qquad , so the clock is showing \qquad
minutes past/to \qquad
- \qquad $+$ \qquad $=60$

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks
- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight

Tell the time to the minute

Key learning

- Complete the number lines and sentences.

- Write the times shown on each clock.

- Draw the hands on the clocks to show the times.

Tell the time to the minute

Reasoning and problem solving

The clock has lost its hour hand.

What time could it be?

The clock has lost its minute hand.

What time could it be?
Compare answers with a partner.
approximately 12 minutes to any hour
any time between quarter past 3 and half past 3

Notes and guidance

This small step is the first time that children are formally introduced to the 12 -hour digital clock, but they may already have experience of this from outside school.
Children continue to use the phrases " \qquad minutes past/ to" the hour to tell the time on a digital clock. This step is important because it highlights the convention that we say "20 minutes to 4 " to describe the time displayed on a digital clock as " $3: 40$ ", not " 40 minutes past 3 ". This builds on the learning from the previous step where children converted times past the hour to times to the hour.
Ensure children record the time using a colon, not a decimal point, as this could lead to confusion in later learning when they look at decimals.

Things to look out for

- Children may write times with a decimal point, rather than using a colon to separate hours and minutes.
- Children may rely on reading times exactly as they appear, rather than converting them, for example saying "two forty-seven" rather than "thirteen minutes to three".
- Children may think there are 100 minutes in an hour and hence think 50 minutes past 3 is 50 minutes to 4

Key questions

- Where have you seen a digital clock before?
- What is the same/different about analogue and digital clocks?
- How could you show the time \qquad on a digital clock?
- What do you add to \qquad to make 60?
- Is the time \qquad past the hour or to the hour?
- How do you know when to describe a time as past or to the hour?

Possible sentence stems

- \qquad minutes past \qquad is the same as \qquad minutes
to \qquad
- 60 - \qquad $=$ \qquad , so the time is \qquad to \qquad

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks
- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight

Read time on a digital clock

Key learning

- What is the same about the clocks? What is different?

- Match the analogue clocks to the digital clocks.

$2: 00$

- Complete the times shown on each clock.

\qquad minutes past 6

\qquad minutes past \qquad
\qquad minutes past \qquad
\qquad minutes to \qquad
\qquad minutes to \qquad
Which is the best way to describe the time on each clock?
- Draw hands on the clocks to show each time.

Read time on a digital clock

Reasoning and problem solving

Annie and Tommy are telling the time.

Notes and guidance

In this small step, children's understanding of time is developed further, as they are introduced to the terms "am" and "pm" to describe times before 12 noon and after 12 noon respectively. Notice that at 12 noon and 12 midnight, am and pm are not used.

Discussing familiar daily activities, such as getting out of bed and going to bed, will help children to understand the concept. Support them to recognise that the 24 hours in a day are split into 12 hours before noon and 12 hours after noon. They will see that the difference between how times before and after noon are recorded is only shown by am and pm and otherwise the times look the same.

Children use both analogue clocks and digital clocks that show am and pm. The 24 -hour clock is not covered until Year 4

Things to look out for

- Children may confuse am and pm, for example thinking 1 am should be 1 pm, because it is late.
- Children may need support to understand that times occur twice each day.
- Children may not be familiar with the terms "noon" and "midnight".

Key questions

- What time does a new day start?
- What time of the day does \qquad happen?
- Could \qquad take place at an am time and a pm time?
- Is \qquad am/pm earlier or later than \qquad $\mathrm{am} / \mathrm{pm}$?
- How do you know whether a time is in the morning or in the afternoon?
- What is the same/different about 6 am on an analogue clock and a digital clock?

Possible sentence stems

- \qquad takes place in the morning/afternoon.
- 12 o'clock is either called \qquad or \qquad

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks
- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight

Use am and pm

Key learning

- Use your class timetable to complete the sentences.
- Maths takes place in the \qquad -
- \qquad takes place in the morning.
- \qquad takes place in the afternoon.
- Home time takes place in the \qquad
- Sort the events into the table to show the time of day that they are likely to happen.

wake up	leave school	eat breakfast
after-school club	break time	go to bed
Morning (am		noon (pm)

Compare answers with a partner.

- Dani starts school at 10 minutes past 9 in the morning.
- Write this time using am or pm.
- Show this time on both clocks.

- Rosie plays netball at 20 minutes past 4 in the afternoon.
- Write this time using am or pm.
- Show this time on both clocks.

- Which is the earliest time in each list?

10:34 am	8:56 am	5:12 am	11:00 am
8:49 pm	1:15 pm	6:05 pm	12:40 pm
6:31 pm	2:00 am	12:27 pm	5:45 am

- Which is the latest time in each list?

Use am and pm

Reasoning and problem solving

Years, months and days

Notes and guidance

In this small step, children develop their understanding of days, weeks, months and years.

Children explore years by using calendars to investigate the number of days in each month. Rhymes or songs could help them to remember the number of days in each month, as will regular revisiting during the school year when the months change. They are also introduced to the concept of leap years and how these differ from non-leap years.

Whole class discussions could involve ordering children's birthdays or festivals, starting with the earliest. Discuss the differences between a calendar year and the school year.

By the end of this step, children should know the number of days in a week, and days and months in a year.

Things to look out for

- Children may mix up the number of days in leap years and non-leap years.
- Children may think that there are exactly 4 weeks in a month.
- Children may need to revisit the number of days in each month regularly before these facts are secure.

Key questions

- Which month comes before \qquad ?
- Which month comes after \qquad ?
- In which month is your birthday?
- Which month changes when there is a leap year?
- How often is there a leap year?
- How many ___ are there in a \qquad ?

Possible sentence stems

- There are \qquad days in a week, so there are
\qquad \times \qquad = \qquad days in \qquad weeks.
- There are \qquad months in a year.
- There are \qquad days in a non-leap year/leap year.

National Curriculum links

- Know the number of seconds in a minute and the number of days in each month, year and leap year

Years, months and days

Key learning

- Complete the sentences.

There are \qquad days in a week.

There are \qquad months in a year.
There are \qquad days in a non-leap year.

There are \qquad days in a leap year.
Leap years happen every \qquad years.

- Use a calendar to help you answer the question.

How many days are in each month in a normal calendar year?

January	May	September
February	June	October
March	July	November
April	August	December

What do you notice?

- Record five people's birthdays in the table.

Name	Date

Order the dates from earliest to latest in the year.

- Here is part of a calendar from 2021

| July | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monday | Tuesday | Wednesday Thursday | Friday | Saturday | Sunday | |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| 26 | 27 | 28 | 29 | 30 | 31 | |

- What day of the week was 9 July?
- The summer holidays started on 23 July. What day did the summer holidays start?
- How many Mondays were there in July 2021?
- What was the date on the last Wednesday in July 2021?
- What day of the week was 30 June?
- Write <, > or = to complete the statements.

Years, months and days

Reasoning and problem solving

Work out the children's birthdays.
Write them in order, starting with the earliest in the year.

Here is a page from a calendar.

| Mon | Tues | Wed | Thur | Fri | Sat | Sun |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | 1 | 2 | 3 | 4 |
| 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| 26 | 27 | 28 | 29 | 30 | 31 | |

Which months could it be showing?
If you also know that there are no school holidays in the month, which months could it be now?

Is the statement always true,
sometimes true or never true?

There are exactly 365 days

Explain your answer.
in a year.

January, March,
May, July,
August, October, December

Kim: 30 January
Mo: 1 February Teddy: 15 June
Eva: 31 December
sometimes true

Notes and guidance

In this small step, children continue to develop their understanding of days, weeks, months and years, looking at the key relationships of 1 week $=7$ days and 1 day $=24$ hours.

Children explore the difference between the number of days in a school week and the number of days in an actual week. They use related number facts, repeated addition or informal multiplication of 2-digit numbers by a 1-digit number to work out how many hours there are in a given number of days or the number of days in a given number of weeks. Using real calendars, children consider how the number of school days in a month may change depending on what day of the week the month starts and on school holidays.

Things to look out for

- Calculation errors may occur, and as children do not yet know the 7 times-table, they will need support to model any calculations with weeks and days.
- Children may think that there are exactly 4 weeks in a month.
- Children may need to revisit the number of days in each month regularly before these facts are secure.

Key questions

- How many days are there in one week?
- How many days are spent at school in one week?
- How many days are not spent at school in one week?
- How many hours are there in one day? How can you use this fact to work out how many hours there are in \qquad days?
- How many hours do you spend at school in a day/week?

Possible sentence stems

- There are ___ hours in a day, so there are
\qquad \times \qquad $=$ \qquad hours in \qquad days.
- There are \qquad days in a week.

National Curriculum links

- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight
- Know the number of seconds in a minute and the number of days in each month, year and leap year

Days and hours

Key learning

- Complete the sentences.

There are \qquad days in a week.

There are \qquad days in a school week.
There are \qquad hours in a day.

- Here is part of a calendar from 2021

| December | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monday | Tuesday | Weanesday | Thursday | Friday | Saturday | Sunday |
| | | 1 | 2 | 3 | 4 | 5 |
| 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| 27 | 28 | 29 | 30 | 31 | | |

- How many days in this month are at the weekend?
- How many days in this month are weekdays?
- Complete the sentences.

There are \qquad hours in a day.

There are \qquad hours in two days.

There are \qquad hours in half a day. \qquad

- Write <, > or = to complete the statements.
hous in a month hours in a day
- Use the fact to work out the missing numbers.

$$
1 \text { week = } 7 \text { days }
$$

- \qquad week $=14$ days \qquad weeks $=84$ days
- 4 weeks $=$ \qquad days
- 16 weeks = \qquad days
- Use the fact to work out the missing numbers.

$$
1 \text { day }=24 \text { hours }
$$

Days and hours

Reasoning and problem solving

Huan gets up at 7 o'clock in the morning and goes to bed at 7 o'clock at night.

Explain Kim's mistake.
How long is Huan awake for?

Is the statement always true, sometimes true or never true?

```
Children go to school }5\mathrm{ days
a week, so they go to school
    20 days in one month.
```

Explain your answer.

Dexter and Jo go to school for 6 hours a day.

Who is correct?
Explain your answer.

Notes and guidance

In this small step, children find durations of time between given start and end times.

Give children opportunities to practically work out durations of time under an hour using clocks with moveable hands. To help secure their understanding of both representations, children need to work out the durations using both analogue and 12-hour digital clocks.

Children explore using a number line showing start and end times. Encourage them to use different methods of finding durations that cross over hours, including moving hands around an analogue clock and using bonds to find the number of minutes until the next hour.

A recap of how many minutes there are in one hour, and the number bonds to 60, may be needed.

Things to look out for

- Children may think that an event that ends at a later time must have a longer duration.
- Children may attempt to calculate duration using column subtraction, taking away the start time from the end time, which will lead to problems when hours are crossed.

Key questions

- How many minutes are there in one hour?
- What times should the number line start and end at?
- How many minutes are there to the next hour?
- How can you find the total duration of the event?
- Do you find it easier to work out duration using an analogue clock or a digital clock?

Possible sentence stems

- The number bond to 60 of \qquad is \qquad
- From \qquad to \qquad o'clock is \qquad minutes.
From \qquad o'clock to \qquad is \qquad minutes. The total time taken is \qquad minutes.

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks
- Compare durations of events

Hours and minutes - use start and end times

Key learning

- The clocks show the start and finish times of some activities.

Work out the duration of each activity.

start
finish

- Complete the table.

Programme	Start time	Finish time	Duration
Pals	$6: 30 \mathrm{am}$	$7: 30 \mathrm{am}$	
Dennis the Scientist	$3: 15 \mathrm{pm}$	$6: 15 \mathrm{pm}$	
The Football Show	$1: 00 \mathrm{pm}$	$3: 00 \mathrm{pm}$	
An Adventure	$10: 40 \mathrm{am}$	$12: 40 \mathrm{pm}$	

- Write is shorter than, is longer than or is the same as to compare the durations.
- 2:00 pm-6:00 pm \qquad 8:00 am-11:00 am.
- 5:30 pm-7:30pm \qquad 4:15 am-7:15 am.
- 10:30 am-12:30 pm \qquad 11:40 pm-1:40 am.
- Alex played football from 2:25 to 3:18

She uses a number line to work out how long she played football.

Use Alex's method to find the durations in minutes.

```
- 10:48 to 11:35 > 7:15 to 8:24 - 9:50 to 10:23
```

- Amir started watching a TV programme at 4:28 pm.

The programme finished at 5:55 pm.
Amir uses a number line to work out how long he watched TV for.

Use Amir's method to find the durations.

- 11:37 am to $12: 51 \mathrm{pm}$
- 5:12 am to 6:49 am
- 1:56 pm to $3: 17 \mathrm{pm}$
- 11:56 pm to 1:08 am

Reasoning and problem solving

Scott gets on a bus at 3:23 pm. He gets off the bus at 4:24 pm. How long was his bus journey?

Compare methods with a partner.

Do you agree with Tiny?
Explain your answer.

No
1 hour and
1 minute

A car park charges $£ 2$ for every 30 minutes of parking.

Mr Trent parks his car in the car park from 1:22 pm to 3:52 pm.

How much does he pay for parking?

Tommy and Annie are watching different films at the cinema.

How long was each film?
Whose film was longer?

Tommy: 1 hour and 28 minutes Annie: 1 hour and 22 minutes

Tommy's

Notes and guidance

Building on the previous step, children use a given duration to count forward to find an end time, or count back to find a start time. Times are given using both analogue and digital clocks to reinforce children's familiarity with both forms.

Start with durations of minutes only, before moving on to examples that involve hours and minutes. Children can use clocks with moveable hands to count forwards or backwards with time. A number line is an important representation to support children when counting on or back to find start and end times. A part-whole model could support them to partition longer durations of time.

Things to look out for

- Children may need support if an hour boundary is crossed.
- Children may count the time in the wrong direction.
- Children may try to use formal methods of addition and subtraction which will give incorrect answers if they work in 100s rather than 60s.

Key questions

- Why is it important to be able to work out how long something lasts?
- How many minutes are there in one hour?
- How can you partition the duration? Is there more than one way?
- How do you know whether to move the minute hand clockwise or anticlockwise?
- Are you being asked to find the start or end time of the activity?
- What strategy can you use to find the start/end time?
- What time does the number line start/end at?

Possible sentence stems

- To work out the start time, I need to \qquad minutes from \qquad
- To work out the end time, I need to \qquad hours and \qquad minutes to \qquad

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks
- Compare durations of events

Key learning

- Break time starts at 10:25 am.

It lasts for 20 minutes.
What time does break time finish?

- After-school club finishes at 4:45 pm.

It lasts for 30 minutes.
What time does after-school club start?

- A rugby match lasts 80 minutes.

How long is this in hours and minutes?
The match kicks off at 5:00 pm.
What time does the match finish?

- A train journey lasts 1 hour and 20 minutes.

The train leaves at 12:25 pm.
The number lines show two ways to work out the arrival time.

Work out the arrival times of trains A and B

Train	Train leaves	Duration
A	$4: 43 \mathrm{pm}$	1 hour and 15 minutes
B	$5: 16 \mathrm{pm}$	55 minutes

- A film is 1 hour and 36 minutes long.

It finishes at 2:24 pm.
Use the number line to work out what time the film starts.

Another film is 2 hours and 17 minutes long.
It finishes at 3:08 pm.
What time does it start?

How do the methods work? Is there a different way?

Reasoning and problem solving

Nijah is going on holiday.
Her plane will take off at 3:48 pm.
She needs to be at the airport $2 \frac{1}{2}$ hours before take-off.

What is the latest time she can arrive at the airport?
The flight lasts for 3 hours and 14 minutes.

What time will she arrive at her destination?

A TV programme lasts 59 minutes.
It starts at $3: 15 \mathrm{pm}$.
What time will it finish?
Compare methods with a partner.

Notes and guidance

In this small step, children extend their understanding of the units of time to include minutes and seconds.

Children could use a stopwatch to compare counting 10 seconds, 30 seconds or 1 minute in their head with the actual timed duration. Additionally, they could use a stopwatch to find the length of time it takes in seconds to complete different tasks, for example run across the hall/playground, do ten star jumps, write their name and so on.

This small step helps children to recognise that there are 60 seconds in 1 minute and to use this to write durations of time in different ways. They can use various calculation strategies to work out how many seconds there are in several minutes.

Things to look out for

- Children may think that there are 100 seconds in a minute, which is similar to the base 10 number system or their experience of 100 pence in a pound.
- Children may confuse the positions of minutes and seconds on a stopwatch.
- Children may confuse hours, minutes and seconds.

Key questions

- How many seconds are there in one minute?
- What can you use to measure time in seconds accurately?
- What activity takes 10 seconds/30 seconds/1 minute?
- Which task took the longest/shortest time to complete?
- How can you change a length of time in seconds into minutes and seconds?

Possible sentence stems

- There are ___ seconds in a minute.
\qquad minutes and \qquad seconds = \qquad $\times 60+$ \qquad seconds
\qquad

National Curriculum links

- Know the number of seconds in a minute and the number of days in each month, year and leap year
- Compare durations of events
- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight

Minutes and seconds

Key learning

- Use a stopwatch to record how many seconds it takes to do each activity.


```
write your name backwards
```

- Complete the statements.
- \qquad seconds $=1$ minute
- 240 seconds $=$ \qquad minutes
- \qquad seconds $=2$ minutes \qquad seconds $=6$ minutes
\qquad seconds $=\frac{1}{2}$ minute - 600 seconds $=$ \qquad minutes
- Match the times in words to the times shown on the stopwatches.

> one hundred and fifty seconds
two minutes and
five seconds

two minutes and

 fifty secondsone hundred and ten seconds

010:02:50
00:02:30

- Aisha draws a bar model to help her convert 4 minutes and 31 seconds into seconds.

Use Aisha's method to complete the statements.

- 3 minutes and 19 seconds $=$ \qquad seconds
- 7 minutes and 42 seconds $=$ \qquad seconds
- Complete the statements.
- 5 minutes and ____ seconds $=324$ seconds
\qquad minutes and \qquad seconds $=499$ seconds
- Write <, > or = to compare the times.

Minutes and seconds

Reasoning and problem solving

What mistake has Ron made?
How many seconds are there in 4 minutes and 15 seconds?

Dora times herself running around the playground.
Her stopwatch looks like this.

Do you agree with Dora?

00:02:03
Ron thinks that there are 100 seconds in a minute.

255 seconds

No

What could the missing number be?
Complete the sentences.
It must be \qquad
It could be \qquad
It cannot be \qquad
Compare answers with a partner.
between 81 and 99 seconds
multiple possible answers, e.g. 90 seconds
multiple possible answers, e.g. 79 seconds

Notes and guidance

In this small step, children extend their understanding of when to use different units of time and compare lengths of time written using different units.

Children consider how long familiar activities take to complete, and this can be supported by completing practical activities and measuring with a stopwatch or other timer. An activity such as "Put your hand up when you think (1 minute/40 seconds) has passed" can be very useful to gauge children's estimation skills when working with time. Children should explore whether it would be more appropriate to measure the time taken to complete a task in seconds, minutes or hours.

By the end of this step, children should have developed a realistic sense of how long it takes to complete a familiar task.

Things to look out for

- Children may find it difficult to choose the correct units for different events/activities.
- When estimating, children often count seconds in their head too quickly.
- Children may compare numbers without reference to the units, for example thinking 30 seconds is longer than 20 minutes because $30>20$

Key questions

- How long would it take to \qquad ?
- What activity takes 10 seconds/30 seconds/1 minute/over an hour?
- Which task took the longest/shortest time to complete?
- What might you measure in seconds/minutes/hours? Why?
- How can you put times in different units in order of size?
- Which is longer, 5 minutes or 200 seconds?

Possible sentence stems

- To measure the time taken to \qquad I would use seconds/minutes/hours.
- I know that \qquad is longer/shorter than \qquad because ...

National Curriculum links

- Know the number of seconds in a minute and the number of days in each month, year and leap year
- Compare durations of events
- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight

Units of time

Key learning

- Complete the sentences using the most likely unit of time.

- It takes 20 \qquad to walk 1 mile.
- It takes 5 \qquad to write my name.
- It takes 4 \qquad to drive from London to Leeds.
- Complete the sentences using the most likely unit of time.
\square minutes

- It will take 5 \qquad to wash the dishes.
- It will take 30 \qquad to blow up a balloon.
- It will take 20 \qquad to get to school.
- Write $<,>$ or $=$ to compare the times.

- What numbers could go in the spaces?
- \qquad seconds < \qquad minutes < 1 hour
- 600 seconds < \qquad minutes < \qquad hours
- Choose the correct word for each sentence.
longer shorter
- Filling a bucket with water will take a \qquad amount of time than a filling a bath with water.
- The 100-metre sprint record is \qquad than the 400-metre record.
- In summer, days are lighter for a \qquad amount of time compared to winter.
- Complete the table to describe how long it takes you to complete each activity.
Record the time in seconds, minutes or hours.

Activity	Duration
brushing teeth	
eating lunch	
a night's sleep	
maths lesson	
writing your name	

Compare answers with a partner.

Units of time

Reasoning and problem solving

No

Put the times in order, starting with the shortest.

95 seconds

6 minutes
2 minutes

Mo and Dora time how long it takes them to get to school.

Dora

2 minutes and 20 seconds

Notes and guidance

In this small step, children solve problems that draw upon many of the different aspects that they have explored throughout the block. This step offers a good opportunity to recap key learning points from the block and questions can be tailored to any areas of difficulty that may have arisen.

Remind children of the number of seconds in a minute, minutes in an hour, hours in a day, days in a week and days in different months. In particular, explore the idea that the shorter the time, the faster it is, meaning that in a race it is the shorter time that wins.

Encourage children to discuss the strategy or representation that they use to solve each problem, in order to help them find the most efficient way to solve problems involving time.

Things to look out for

- Children may mix up units and misremember conversions.
- Children may look at the values and assume that a greater number (slower time) beats a lower number (faster time).
- Children may find it hard to compare times given in multiple units.

Key questions

- How many ____ are there in a ___ ?
- Which of these times is the quickest/slowest?
- How can you order these times from slowest to fastest?
- Which months have 31 days?

Possible sentence stems

- There are \qquad seconds in \qquad minutes.
- There are \qquad hours in \qquad days.
- There are \qquad days in \qquad weeks.

National Curriculum links

- Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks
- Know the number of seconds in a minute and the number of days in each month, year and leap year
- Compare durations of events
- Estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight

Solve problems with time

Key learning

-

Do you agree with Amir?

- Tommy and Rosie time themselves running a lap of the playground.

Tommy completes the lap in 86 seconds.
Rosie completes the lap in 95 seconds.

Do you agree with Rosie?
Explain your answer.

- Order the times from shortest to longest.

310 seconds
500 seconds

- Annie looks at this clock before she starts watching a film.

She looks at the digital clock when the film finishes.

i:

How long did the film last?

- Teddy gets on a bus.

He travels on the bus for 55 minutes. He gets off at 12:45 pm.
What time did he get on the bus?

- Mrs Lee parks her car for 240 minutes. How much does she spend on parking?

Car parking

$£ 1$ for the first 3 hours Then 50p per hour

Solve problems with time

Reasoning and problem solving

Brett, Jack and Sam all swim 25 m.

- Brett completes the swim in 39 seconds.
- Jack takes 15 seconds longer.
- Sam is 18 seconds faster than Jack.

How long do the three children spend swimming in total?

Give your answer in minutes and seconds.

It is the 27th day of the month.
In 7 days' time, it will be the 3rd day of the month.

What month could it be?
Explain your answer.

any month with 31 days
2 minutes and
9 seconds

Mo spends 1 hour and 3 minutes completing his homework.

Eva spends 72 minutes completing her homework.

Do you agree with Tiny?
Explain your answer.

Kim starts watching a 2 -hour film at 11:45 am.

Teddy finishes watching a 3-hour film at $4: 30 \mathrm{pm}$.

For how long were Kim and Teddy watching a film at the same time?

Summer Block 4

Shape

Small steps

Step 1	Turns and angles
Step 2	Right angles
Step 3	Compare angles
Step 4	Measure and draw accurately
Step 5	Horizontal and vertical
Step 6	Parallel and perpendicular
Step 7	Recognise and describe 2-D shapes
Step 8	Draw polygons

Small steps

Step 9
Recognise and describe 3-D shapes

Turns and angles

Notes and guidance

In this small step, children are introduced to the concept of angles for the first time. In Year 2, they described turns as quarter, half, three-quarter and full turns. They will now recognise angles as describing the size of a turn and understand greater angles as having made a greater turn.
Children practise making quarter, half, three-quarter and whole turns in both clockwise and anticlockwise directions and in familiar contexts such as on a clock face or the points of a compass.

Model the correct mathematical language with instructions such as "make a quarter turn anticlockwise". They can then use this mathematical language to give instructions to others.
Help children to visualise the starting and finishing points of the turn as two straight lines that meet at a point and that an angle is created at the point where these lines meet.

Things to look out for

- Children may see the size of an angle as the distance between two lines, rather than a measurement of turn.
- Children may confuse clockwise and anticlockwise.
- Children may not recognise the same angles if they are given different starting points or orientations.

Key questions

- Which direction are you facing to start?
- Which direction is clockwise/anticlockwise?
- What fraction of a turn do you need to do to face \qquad ?
- Which direction do you need to turn?
- Is there more than one possible way?
- Where can you see angles in the classroom?

Possible sentence stems

- If I face \qquad and make a \qquad turn clockwise/anticlockwise,

I am now facing \qquad

- My starting point is \qquad
I turn \qquad
My finishing point is \qquad
- Making a $\frac{1}{4}$ turn followed by another $\frac{1}{4}$ turn is the same as making a \qquad turn.

National Curriculum links

- Recognise angles as a property of shape or a description of a turn

Turns and angles

Key learning

Take children outside or into the hall where they can practise making and describing turns. Give children instructions using the mathematical vocabulary quarter, half, three-quarter and whole turns, for example: "Face the tree and make a half turn clockwise." Ask children to work in pairs or small groups giving each other instructions to follow.

Encourage children to see angles as turns in the world around them. Model the use of mathematical language such as clockwise, anticlockwise, greater turn, smaller turn, as well as quarter, half, threequarter and whole turns, to describe what they see.

Examples could include a door opening; the hands of a clock moving; opening and closing a jar or bottle; a turn on a skateboard, bike or scooter; turning on a swivel chair.

- Look at this clock.

Turn the minute hand one quarter of a turn clockwise.

Where is the hand pointing now?
What time could the clock show now?

What time could the clock show if the minute hand is turned another half turn?

- Here is a compass showing the four points north, east, south and west.
Describe the turns clockwise from:
$\begin{array}{ll}\text { north to south east to south } \\ \text { west to north } & \text { east to north }\end{array}$

How would the descriptions change if the turns were anticlockwise?

- Which pictures show at least one angle?

Turns and angles

Reasoning and problem solving

Both children are correct.

Write instructions for a partner to follow to get from the start to reach any one of the shops. They are not allowed to walk on the white squares.

Compare answers as a class.

Notes and guidance

In this small step, children are introduced to the term "right angle" to describe a quarter turn and learn the symbol for a right angle.

As in the previous step, children make the link between quarter turns and half turns by recognising that two right angles are equal to one half turn, three right angles are equal to three-quarters of a turn and four right angles are equal to a full turn. It is important for them to see examples of right angles in different orientations so that they understand that a right angle is not just made from vertical and horizontal lines.

Children go on to recognise right angles in a range of contexts, including in the world around them and within known 2-D shapes. They use the right-angle symbol to show right angles in shapes.

Things to look out for

- Children may assume that right angles are only constructed from a vertical and horizontal line and not recognise right angles in other orientations.
- Children may need clarification over the term "right" in "right angle" to avoid confusion that all right angles point to the right.

Key questions

- How many right angles are equal to a half turn?
- How many right angles are equal to a three-quarter turn?
- How many right angles are equal to a full turn?
- Where can you see right angles in the classroom/at school?
- What shapes contain right angles?
- How many right angles are there in a \qquad ?
- What shapes can you draw that have right angles?

Possible sentence stems

- \qquad right angles = \qquad turn
- There are \qquad right angles in a \qquad -

National Curriculum links

- Recognise angles as a property of shape or a description of a turn
- Identify right angles, recognise that two right angles make a half turn, three make three-quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle

Right angles

Key learning

- Complete the sentences.

1 right angle =a \qquad turn
\qquad right angles $=a$ half turn
3 right angles $=a$ \qquad turn
\qquad right angles $=$ a full turn

- Create a right-angle checker like this one.

Use your right-angle checker to find right angles in your classroom or school.

Draw at least three right angles that you have seen.

- There are six right angles inside this shape.

Use the symbol for a right angle to show them on the shape.

- Sort the shapes into the table based on how many right angles they have.

Draw an extra shape in each column.

- How many right angles are there in this picture?
- Draw lines along the dots to make a right angle with each line.

Right angles

Reasoning and problem solving

Dani is facing south and turns clockwise through 3 right angles.

Brett is facing west and turns through 2 right angles.
Eva is facing north and turns 1 right angle clockwise.

Do you agree with Eva?
Explain your answer.

Compare angles

Notes and guidance

In this small step, children explore angles that are greater than and smaller than a right angle.

Encourage children to continue to think of angles as turns and describe turning less than or more than a right angle/quarter turn. They should also compare angles in shapes and lines by measuring and comparing them to a right angle. The use of a right-angle checker is a great way to support this activity.

Children are introduced to the terms "acute" and "obtuse" to describe the angles. Explain that acute angles are less than a right angle, and obtuse angles are greater than 1 but less than 2 right angles. These terms are in the non-statutory guidance for Year 3 and will be revisited in Year 4

Children use these terms to understand, label and compare angles that are less than two right angles.

Things to look out for

- Children may see the size of an angle as the size of the two lines or the distance between them rather than a measurement of turn.
- Children may not recognise the same angles if they are given different starting points or orientations.

Key questions

- How can you check if this is a right angle?
- Is the angle greater than or less than a right angle?
- Which angle is greater?
- What is an acute angle?
- What is an obtuse angle?
- Where can you see an acute/obtuse angle in the classroom?

Possible sentence stems

- Angle A is \qquad than angle B.
- The angle is \qquad than a right angle.
- An angle less than a right angle is an \qquad angle.
- An angle greater than one right angle but less than two right angles is an \qquad angle.

National Curriculum links

- Recognise angles as a property of shape or a description of a turn
- Identify right angles, recognise that two right angles make a half turn, three make three-quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle

Compare angles

Key learning

- Sort the angles into the table.

- Write <, > or = to compare the angles.

- Use a right-angle checker to find three acute angles and three obtuse angles in the classroom.

- Label the acute and obtuse angles in these pictures.

- In the table, draw two acute angles, two obtuse angles and two right angles.

Acute angle	Right angle	Obtuse angle

- Draw a hexagon that has:
- at least one obtuse angle
- no acute angles
- exactly two right angles

Compare angles

Reasoning and problem solving

Tiny is comparing angles.

Explain why Tiny is wrong.

Both angles show the same amount of turn.

What could Amir's shape look like?
Describe the angles in a shape to a partner.
Can your partner draw the shape?

Is the statement always true, sometimes true or never true?

A shape with four sides has four right angles.

Explain your answer.
multiple possible answers, e.g.

sometimes true

Notes and guidance

In this small step children measure and draw straight lines accurately in centimetres and millimetres.

Children start by using a ruler to measure lines from zero. Encourage them to spread out their fingers to ensure a secure grip on the ruler when measuring and drawing straight lines. When they are familiar with measuring from zero, they could explore measuring from other numbers and finding the difference between the start and end points.

Children initially measure in whole centimetres before exploring measurements made up of centimetres and millimetres. They may also start to describe lengths to the nearest whole centimetre, for example 8 cm and 3 mm to the nearest whole centimetre is 8 cm .
Children then embed their measuring skills by using a ruler to draw lines and 2-D shapes accurately.

Things to look out for

- Children may need support on to how to hold a ruler.
- When measuring, children may assume that the number on the ruler at the end of the line is equal to the length of the line, without checking that they are measuring from zero each time.

Key questions

- How can you hold the ruler to ensure that it does not slip?
- Where should you start measuring from?
- Where should you measure to?
- How long is the line in centimetres?
- How long is the line in millimetres?
- What is the length to the nearest whole centimetre? How do you know?

Possible sentence stems

- $1 \mathrm{~cm}=$ \qquad mm, so
\qquad $\mathrm{cm}=$ \qquad \times \qquad $\mathrm{mm}=$ \qquad mm
- The length of the line is \qquad cm and \qquad mm.

National Curriculum links

- Measure the perimeter of simple 2-D shapes
- Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them
- Measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g); volume/capacity (l/ml)

Measure and draw accurately

Key learning

- How long is each line?
- Here is a rectangle.

- What is the length of each side?
- What is the perimeter of the rectangle?
- Use a ruler to draw lines of these lengths.

- The line is 9 cm 9 mm long. Complete the sentence.

cm
cm

Complete the sentence for each line.

Line \qquad is \qquad cm \qquad mm long.

The line measures \qquad cm to the nearest cm.

- Draw a line for each measurement.

What does each line measure to the nearest centimetre?

Measure and draw accurately

Reasoning and problem solving


```
0
cm
```


Is Tiny correct?
Explain your answer.

The sides of a rectangle are all a whole number of centimetres. Its perimeter is 16 cm .

What could the rectangle look like?
Use centimetre squared paper.
Draw as many possible rectangles as you can.

A shape has 5 sides.

Each side measures 5 cm .
The shape has 2 right angles,
2 obtuse angles and 1 acute angle.
What could the shape look like?
Draw a possible shape on plain paper.
$1 \mathrm{~cm} \times 7 \mathrm{~cm}$
$2 \mathrm{~cm} \times 6 \mathrm{~cm}$
$3 \mathrm{~cm} \times 5 \mathrm{~cm}$
$4 \mathrm{~cm} \times 4 \mathrm{~cm}$
multiple possible answers, e.g.

Notes and guidance

In this small step, children learn to recognise and draw horizontal and vertical lines in a range of contexts.

Children begin by finding horizontal and vertical lines in the classroom and the world around them. This could be related to the horizon as a means of remembering which term relates to which line. Care should be taken to ensure that all lines have a distinct orientation and could not be perceived as sloping.

Once children are confident recognising horizontal and vertical lines, they can embed this understanding by drawing horizontal and vertical lines. As before, a range of examples can be used, including individual lines and lines within shapes.
Children then build on their knowledge of symmetry from Year 2, by identifying horizontal and vertical lines of symmetry in familiar shapes.

Things to look out for

- Children may mix up the terms "horizontal" and "vertical".
- Children may not recognise that horizontal and vertical lines are directly related to their orientation, and that a horizontal line does not continue to be horizontal if the line is shown in a different orientation.

Key questions

- What is the same and what is different about horizontal and vertical lines?
- Where can you see horizontal and vertical lines?
- How could you describe a vertical/horizontal line without using the word "vertical"/"horizontal"?
- What could you use to help you remember what the words horizontal and vertical mean?
- What do you call a line that is neither horizontal nor vertical?

Possible sentence stems

- A line drawn across the page is called a \qquad line.
- A line drawn down the page is called a \qquad line.
- The horizon is a \qquad line.

National Curriculum links

- Identify horizontal and vertical lines and pairs of perpendicular and parallel lines

Horizontal and vertical

Key learning

- Complete the sentences.

A line drawn across the page is called a \qquad line. \qquad
A line drawn down the page is called a \qquad line.

- Find three horizontal lines and three vertical lines in the classroom.

Record them in the table.

Horizontal	Vertical

- Label the vertical and horizontal lines in the pictures.

- Draw horizontal lines to show the shapes that have a horizontal line of symmetry.

- Draw vertical lines to show the shapes that have a vertical line of symmetry.

- Draw shapes to match the descriptions.
- 2 horizontal lines and 2 vertical lines
- 1 horizontal line and no vertical lines
- 2 horizontal lines and no vertical lines
- no horizontal lines and 2 vertical lines
- Draw a horizontal line measuring 70 mm .

Draw a vertical line measuring 5 cm .
Draw a line measuring 65 mm that is neither horizontal nor vertical.

- Draw and label horizontal and/or vertical lines of symmetry on the shapes.

Horizontal and vertical

Reasoning and problem solving

How many horizontal and vertical lines can you see in this picture?

Is the statement always true, sometimes true or never true?

A square has two horizontal lines and two vertical lines.

Explain your answer.

5 horizontal lines 8 vertical lines
sometimes true

Does each shape have horizontal and/or vertical lines of symmetry?

Write yes or no to complete the table.

Shape	Horizontal line of symmetry?	Vertical line of symmetry?

no yes
yes yes
yes yes
no
no
yes
no

Parallel and perpendicular

Notes and guidance

In this small step, children find and identify parallel and perpendicular lines in a range of practical contexts.

Children learn that parallel lines stay the same distance apart and never meet, whereas perpendicular lines meet at a right angle. Give them the opportunity to think about where they may find parallel and perpendicular lines in the world around them.
Children are exposed to examples and non-examples of parallel and perpendicular lines to support their understanding. They learnt about horizontal and vertical lines in the previous step, but ensure that they are also presented with lines that are not horizontal and vertical to avoid any potential misconceptions.

Children are introduced to the arrow notation to represent parallel lines and use the right-angle symbol to show perpendicular lines. They may need to use a right-angle checker to help them decide if lines are perpendicular.

Things to look out for

- Children may assume that parallel lines must be the same length.
- Children may not recognise parallel and perpendicular lines if they are not presented horizontally/vertically.

Key questions

- What are parallel lines?
- Are these pairs of lines parallel? Why/why not?
- What are perpendicular lines?
- Are these pairs of lines perpendicular? Why/why not?
- Where might you see sets of parallel lines in the world around you?
- Where can you see sets of parallel and perpendicular lines in the classroom?

Possible sentence stems

- Lines that stay the same distance apart and never meet are called \qquad lines.
- Straight lines that meet at a right angle are called \qquad lines.
- These lines are parallel/perpendicular because ...

National Curriculum links

- Identify horizontal and vertical lines and pairs of perpendicular and parallel lines

Parallel and perpendicular

Key learning

- Which pairs of lines are parallel?

- Draw a line that is parallel to this one.

- Use arrows to show the parallel lines in the shapes.

- Which pairs of lines are perpendicular?

- Draw a line that is perpendicular to this one.

- Draw the right-angle symbol to show the perpendicular lines in the shapes.

- Find three sets of parallel lines and three sets of perpendicular lines in the classroom.
- Some lines are drawn on a squared grid.

Which two pairs of lines are parallel?
Which two pairs of lines are perpendicular?

Parallel and perpendicular

Reasoning and problem solving

Here is a flag.

Mark three sets of parallel lines and three sets of perpendicular lines.

Draw your own flag with parallel and perpendicular lines.

Are the statements about shape $A B C D$ true or false?

The line from A to B is parallel to the line from C to D.

The line from A to C is parallel to the line from B to D.

The line from A to D is perpendicular to the line from C to D.

True
False
False

Notes and guidance

In this small step, children revisit their understanding of 2-D shapes from Year 2, recognising and naming a variety of 2-D shapes before using their knowledge from the previous steps in this block to describe them.

Children describe the properties of shapes, including types of angles, lines, symmetry and lengths of sides. Give them opportunities to identify a shape from a description and to describe a shape for a partner to identify.

It is important for children to recognise that 2-D shapes are flat and that the manipulatives they may handle in class are representations of the shapes
Ensure that children are exposed to standard and non-standard examples of 2-D shapes to support their understanding that not all shapes with the same number of sides/vertices look the same.

Things to look out for

- Children may make errors when presented with irregular or non-standard variations of shapes.
- There is a large amount of vocabulary and children may mix up the names of 2-D shapes.

Key questions

- What is the name of this shape? How do you know?
- What are the properties of a \qquad ?
- Does a ___ always look like this? Give some examples.
- How many angles does a \qquad have?
- How many lines of symmetry does a \qquad have?
- What types of lines are in a \qquad ?
- How can you describe this shape?
- What types of angles can you see on the shape?

Possible sentence stems

- A \qquad has \qquad angles/sides.
- This \qquad has \qquad lines of symmetry.
- This \qquad has \qquad pairs of parallel/perpendicular lines.

National Curriculum links

- Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them

Key learning

- Match the labels to the shapes.

rectangle

- Name the shapes.

- Complete the sentences to describe this shape.

It has \qquad angles.

It has \qquad right angles.
It has \qquad obtuse angle.

It has \qquad acute angle.
It has \qquad lines of symmetry.

- Draw the shape that is being described.
- It is a quadrilateral.
- It has equal sides.
- The opposite sides are parallel.
- There are no sets of perpendicular lines.
- It has 2 obtuse angles and 2 acute angles.
- The opposite sides are parallel.
- What is the same and what is different about the two shapes?

- Choose one of the 2-D shapes and describe it to a partner.

Think about the angles, the types of lines it is made up of and whether it has any lines of symmetry.
Can your partner identify the shape from your description?

Recognise and describe 2-D shapes

Reasoning and problem solving

Is Mo correct?
Explain your answer.
What shape could Whitney be thinking of?

What is the same and what is different about the shapes?

Same: at least one line of symmetry a vertical line of symmetry
Different: different number of angles/sides triangle has a pair of perpendicular lines

Write the name of at least one shape in each part of the table.

	At least 1 right angle	No right angles
4 sides		
Not 4 sides		

Draw the shapes.
multiple possible answers, e.g. top row: square, rhombus; bottom row: right-angled triangle, pentagon

Draw polygons

Notes and guidance

Building on the previous steps in this block, children use their knowledge of the properties of shapes to accurately create and draw 2-D shapes.

Building on learning from Year 2, children begin by using geoboards and elastic bands to explore how to make shapes, before using dotted paper to draw them using a pencil and a ruler. They then move on to drawing shapes accurately with a ruler when given the measurement for each length. Children should use their knowledge of vertices and sides to ensure that their drawings are accurate.

Children should recognise that there is more than one way to draw a shape, for example a hexagon can be any enclosed shape that has 6 straight sides and 6 vertices.

Things to look out for

- When drawing accurately, children may measure from the very start of the ruler or from 1 cm on the ruler instead of from zero.
- Children may not draw shapes with straight sides.
- Children may not start a new side at a vertex, which could mean that they draw an extra side/vertex.

Key questions

- What equipment do you need to draw a polygon?
- How can you tell if a shape is a polygon or not?
- Where will you draw the final vertex on the dotted paper?
- How can you accurately draw a \qquad ?
- How do you know that you have drawn a \qquad ?
- Is there more than one way to draw a \qquad ?
- Can you draw a polygon without a ruler? Why/why not?

Possible sentence stems

- I know that I have drawn a \qquad because it has \qquad sides and \qquad vertices.

National Curriculum links

- Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them

Draw polygons

Key learning

- Use a geoboard to make a square, a rectangle and a triangle.

What other shapes can you make?

- Here are four vertices of a pentagon.

Mark the fifth vertex and join the points to draw the pentagon.

Compare answers with a partner.

- Here are two sides of a square. Complete the square.

- Mark the missing vertices of this quadrilateral so that there is one set of parallel lines.

Compare answers with a partner.
Is there more than one way to do it?

- Draw each shape on dotted paper.
- a square with sides measuring 2 cm
- a square that is larger than the one you have just drawn
- a rectangle with sides measuring 4 cm and 6 cm
\Rightarrow a triangle with two sides of equal length
- Draw a 6-sided shape.

Compare shapes with a partner.
What is the same about the shapes? What is different?

Draw polygons

Reasoning and problem solving

Tiny thinks the vertices of a square are marked.

Is Tiny correct?
Explain your answer.

multiple possible answers, e.g.

No

Draw at least one shape in each section of the table.

	At least 1 pair of parallel lines	No pairs of parallel lines
4 sides		
Not 4 sides		

Compare answers with a partner.
multiple possible answers, e.g.

Notes and guidance

In this small step, children recap their understanding of 3-D shapes from Year 2 and describe shapes in terms of their properties.

Children recognise and name a variety of 3-D shapes in different orientations. They then use mathematical language to describe shapes by identifying the number of faces, edges and vertices. Provide children with the opportunity to handle 3 -D shapes to help them identify and remember the shape's properties.

Where a shape has a curved surface, children should know that this is not a face. For example, a cylinder has two flat circular faces and one curved surface.

Give children opportunities to identify a shape from a description and to describe a shape for a partner to identify.

Things to look out for

- Children may not recall the names of all 3-D shapes.
- Children may confuse the names of 3-D shapes with the names of the 2-D faces, for example calling a cube a square.

Key questions

- What is the name of this shape?
- What are the properties of a \qquad ?
- What words could you use to describe 3-D shapes?
- How many edges/faces/vertices/curved surfaces does a \qquad have?
- How can you describe this shape?
- What is the same and what is different about the shapes?

Possible sentence stems

- A ___ has flat faces.
- A \qquad has a curved surface.
- A \qquad has \qquad vertices.
- A \qquad has \qquad edges.

National Curriculum links

- Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them

Recognise and describe 3-D shapes

Key learning

- Match the shapes to the labels.

square-based pyramid

- What is the mathematical name of each shape?

- Complete the table.

3-D shape	Number of edges	Number of faces	Number of vertices	Number of curved surfaces

- Choose one of these 3-D shapes.
- Complete the sentences to describe the 3-D shape.

This shape is a \qquad
It has \qquad faces.

It has \qquad edges.
It has \qquad vertices.

Describe the shape's properties to a partner.
Can they identify the shape from your description?

Recognise and describe 3-D shapes

Reasoning and problem solving

This shape is a pentagonal prism.

Complete the sentences to describe the shape.

It has \qquad faces.
\qquad of the faces are rectangles.
It has \qquad edges.

It has \qquad vertices

What do you notice about the face of each end of the prism and the number of rectangular faces?

Dexter has a 3-D shape.

What could Dexter's shape be?

Sort a selection of 3-D shapes into the table.

Change the headings in the table and sort your shapes again.
multiple possible
answers, e.g.
cube, cuboid,
square-based
pyramid

Compare answers as a class.

Make 3-D shapes

Notes and guidance

In this small step, children embed the understanding from the previous step by building 3-D shapes from a range of construction materials such as cubes, straws, marshmallows and modelling clay.

Children make shapes such as cubes, cuboids, prisms and pyramids. Cylinders and other shapes with curved surfaces are more challenging, but rolling up rectangular sheets of paper is a good starting point. Nets could be provided for children to cut out and fold up; these are explored formally in upper Key Stage 2

Encourage children to continue to use mathematical language to describe the shapes they have made to help reinforce their earlier learning. Examples of mathematical language should include: edges, faces, vertices, curved surfaces, parallel, perpendicular, horizontal, vertical and the names of 2-D shapes that are faces of 3-D shapes.

Things to look out for

- Children may be familiar with a shape in one orientation and not recognise the same shape in a different orientation.
- There is a large amount of vocabulary and children may confuse the terminology.

Key questions

- How is a 3-D shape different from a 2-D shape?
- How many edges/faces/vertices/curved surfaces does the shape have?
- What is the same and what is different about these shapes?
- Does the shape look the same or different if you look at it from different places?

Possible sentence stems

- The shape has \qquad edges.
- The shape has \qquad faces.
- The shape has \qquad vertices.
- The shape has \qquad curved surface.
- The faces of a \qquad are the 2-D shapes \qquad and \qquad

National Curriculum links

- Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them

Make 3-D shapes

Key learning

- Take six cubes.

Make the 3-D shapes.

What is the same about the shapes? What is different?

- How many different 3-D shapes can you make using ten cubes?

- Aisha has made a cuboid using straws and marshmallows.
- What did she use to make the edges of the cuboid?

How many edges does the cuboid have?

- What did she use to make the vertices of the cuboid?

How many vertices does the cuboid have?

- Use straws and modelling clay to make the shapes.

How many straws and pieces of clay do you need?

3-D shape	Number of straws (edges)	Number of pieces of clay (vertices)

What other 3-D shapes can you make?

- Cut and fold the nets to make 3-D shapes.

What 3-D shapes have you made?

Make 3-D shapes

Reasoning and problem solving

Max has 9 straws and 6 balls of clay.

What 3-D shape can Max make using all of the straws and clay?
Use straws and clay to make the shape.

triangular prism
 and rectangles and make a 3-D shape from them.

Explain your answer.

Explain the mistake that Tiny has made.
How many straws and balls of clay do you need to make a square-based pyramid?

Is there enough equipment to make a triangular-based pyramid?

Explain your answer.

Tiny has only considered one triangular face of the pyramid.

8 straws and
5 balls of clay

Summer Block 5

Statistics

Small steps

Step 1	Interpret pictograms
Step 2	Draw pictograms
Step 3	Interpret bar charts
Step 4	Draw bar charts
Step 5	Collect and represent data
Step 6	Two-way tables

Interpret pictograms

Notes and guidance

In this small step, children learn to read and interpret information presented in pictograms, building on their learning from Year 2

Children ask and answer questions about information presented in both horizontal and vertical pictograms. Encourage them to think carefully about why a particular symbol has been chosen and its relationship to the data being presented. It is important that children understand the value of each symbol and what it means when a half, quarter or three-quarter symbol is used. An understanding of the key is therefore a crucial element of understanding the data.

Children revisit and extend their knowledge of constructing their own pictograms in the next step.

Things to look out for

- Children may use one-to-one correspondence between the number of symbols in the pictogram and the value of the data without considering the value of each symbol as presented in the key.
- Similarly, children may count half symbols as $\frac{1}{2}$ rather than as half the value of a full symbol.

Key questions

- What information is shown in the pictogram?
- What symbols are used in the pictogram?
- What does the key tell you?
- What is the value of each symbol?
- What is the value of half/quarter of a symbol?
- What is the value of the symbols for \qquad
- Why do the symbols need to be the same size?

Possible sentence stems

- One symbol is equal to \qquad , so \qquad symbols are equal to \qquad
- If one symbol is equal to \qquad then half a symbol is equal to \qquad

National Curriculum links

- Interpret and present data using bar charts, pictograms and tables
- Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables

Interpret pictograms

Key learning

- Dani draws a pictogram to show the fruit that the children in her class eat at break time.

Fruit	Number of children
apple	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
pear	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
orange	$\bigcirc \bigcirc \bigcirc \bigcirc$
banana	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Key

O=1 child

What can you tell by looking at the pictogram?
Talk about it with a partner.

- Four classes are recording how many books they read in a week. Here are the results from last week.

Class	Books read
Class 1	$\square \square \square$
Class 2	$\square \square \square$
Class 3	$\square \square \square$
Class 4	$\square \square \square \square$

Key
 $=5$ books

- Which class read the most books?
- Which class read the fewest books?
- How many more books did Class 4 read than Class 2?

What other questions could you ask about the pictogram?

- Amir and Brett are looking for different kinds of flowers in the park. Here is what they found.

Flower	Number found
dandelion	08080
rose	080
tulip	0808
daisy	8808

Key
$88=4$ flowers

Use the pictogram to answer the questions.

- What kind of flower did they find the most of?
- How many more daisies did they find than roses?
- Which kind of flower did they find 14 of?
- How many tulips did they find?
- Is the statement true or false? How do you know?

```
Amir and Brett found the same number of tulips as daisies.
```

What can you tell by looking at the pictogram?
What could you find out?

Interpret pictograms

Reasoning and problem solving

Whitney draws a pictogram to show how many chocolate eggs each class won at the school fair.

Key = 5 eggs	
Class	Number of eggs
1	, \% -
2	, \% - \%
3	, - $)^{2}$ (
4	, \% - .
5	-
6	, .

Tom shows the same information in another pictogram.

In his key, he uses a picture of one egg to represent 10 eggs.

How many eggs does Tom need to draw for Class 6?

There are 32 children in Class 3
The pictogram shows how the children of Class 3 get to school.

How many children walk to school?
Write some questions about the pictogram for a partner to answer.

Draw pictograms

Notes and guidance

In this small step, children construct their own pictograms using given data on a range of topics.

Children need to think carefully about how the data could be presented using a pictogram. Initially, it may be beneficial for children to use counters and printed grids to present data before moving on to choose their own appropriate symbols to match the topic of the data. They need to select a symbol that is easily replicated and be able to divide it into half, quarter and three-quarter symbols. Remind them that they always need to show the numerical value of a full symbol in a key. Children should practise presenting data both horizontally and vertically.

Things to look out for

- Children may always want to use a symbol to represent one item, rather than reducing the number of symbols by using multiples.
- Children may choose a symbol that is not easily shown as a half or quarter.
- Children may draw larger symbols for greater numbers, rather than keeping the symbols a consistent size.

Key questions

- What is this data about? How could you represent it?
- What symbol are you going to use? Why?
- What value will each symbol have?
- Can you use half a symbol? What value would this have?
- Why do you need to include a key?

Possible sentence stems

- One symbol represents \qquad items, so \qquad symbols represents \qquad \times \qquad $=$ \qquad items.
- One symbol represents \qquad items, so half a symbol represents \qquad \div \qquad = \qquad items.
- I will make one symbol represent \qquad items because ...

National Curriculum links

- Interpret and present data using bar charts, pictograms and tables
- Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables

Draw pictograms

Key learning

- Class 3A have been finding out people's favourite crisp flavour.

The table shows what they found.

Flavour	salt and vinegar	ready salted	roast chicken	prawn cocktail	tangy cheese
Number	6	8	8	2	4

- Use the data and counters to create a pictogram where 1 counter = 1 child.
- Create a second pictogram where 1 counter $=2$ children.
- Complete the pictogram using the information.
- Group 2 collected 40 apples.
- Group 4 collected half as many apples as group 1

Group	Apples
1	00
2	
3	O
4	

Key
O $=8$ apples

- How many apples did each group collect?
- How many apples did they collect altogether?
- Class 3B are recording the weather during the summer term.

Weather	sunny	cloudy	rainy	windy	snowy
Number of days	12	16	8	6	0

Draw a vertical pictogram for the data.
Use one symbol to represent 4 days.

- Class 3C are counting the colours of cars that pass the school.

Colour	red	blue	black	silver	white	other
Number	12	6	14	10	14	2

Draw a pictogram to show their findings.

- Eva has carried out a survey in the playground, asking children their favourite sport.

The table shows her results.

Sport	basketball	running	football	tennis	do not like sport
Number	12	24	32	4	16

Eva draws 1 circle to represent 8 people.
How many circles does she need to draw for each category?

Draw pictograms

Reasoning and problem solving

The pictogram shows the goals scored in six football matches.

Match	Number of goals
1	$\bigcirc 3$
2	
3	(\%)
4	53
5	6896
6	¢ 3

Key $8=2$ goals
Some paint has spilt on the pictogram.
Use the clues to complete the pictogram.

- Match 1 had 1 more goal than match 3
- Match 6 had 1 less goal than match 2
- Match 4 had twice as many goals as match 3

The table shows the number of birds spotted in the school playground.

Type of bird	robin	crow	sparrow	pigeon
Number	8	6	10	12

Ron, Sam and Teddy are designing pictograms to show the data.

Whose idea is the best?

Interpret bar charts

Notes and guidance

In this small step, children learn to interpret bar charts, making links to their knowledge of pictograms.

Although children encountered block diagrams in Year 2, this is the first time that they have been introduced to bar charts and care should be taken to ensure that children understand the scales. Use the links to pictograms and number lines to support children's understanding of bar charts, with scales limited to steps of 1, 2, 5 and 10

Spend some time closely examining bar charts before asking specific questions. Discuss what children can see, what they know and what they could find out, before considering specific questions that require reading the data more precisely.

The focus in this step is on reading and interpreting the data, before moving on to constructing bar charts in the next step.

Key questions

- What can you see on the bar chart?
- What could you find out?
- What is the same about a pictogram and a bar chart? What is different?
- What do the labels on each axis of the bar chart tell you?
- What scale is being used on the axis?
- Where do you measure from?
- If the bar is halfway between two values on the axis, how can you work out the value of the bar?

Possible sentence stems

- The most/least popular item is \qquad
- The scale shows that 1 square is equal to \qquad items.

National Curriculum links

- Interpret and present data using bar charts, pictograms and tables
- Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables

Interpret bar charts

Key learning

- Here is a bar chart that shows the number of children who have different pets.

- How many children have a dog?
- How many children have a hamster?
- What do you notice about the number of children who have a cat and the number of children who have a rabbit?
- How many children have a gerbil or a rabbit?
- How many more children have a dog than have a hamster?
- Is it possible to work out how many children in total have a pet?
- What else can you work out from the bar chart?
- The bar chart shows the number of sunny days between May and September.

- Which month had the greatest number of sunny days?
- There were 25 sunny days in June. How do you know?
- How many sunny days were there in July?
- How many more sunny days were there in August than in September?
- How many sunny days were there in total in May and June?
- Were there more sunny days between May and July or between August and September? How do you know?

Interpret bar charts

Reasoning and problem solving

The pictogram and the bar chart show the number of goals scored by four football teams.

Team	Number of goals
team A	(8)
team B	096
team C	4
team D	09

Key $\boldsymbol{*}=2$ goals

What is the same and what is different about the two charts?

The bar charts show how many people have pets.

Do the bar charts show the same information?
Explain your answer.

Draw bar charts

Notes and guidance

In this small step, children use information from tally charts, pictograms and tables to construct bar charts.

Children can use their knowledge of drawing pictograms to make comparisons with drawing bar charts, noting how they are the same and how they are different. They have the opportunity to draw bar charts using scales of 1, 2, 5 and 10, initially by being directed to the most appropriate scale and then by choosing the scale for themselves. Some children may benefit from having pre-drawn axes to work from.

Children need to label their bar charts accurately and align the top of each bar carefully. In this step, they use data given to them, focusing on how best to construct the bar chart. They will have the opportunity to collect and present their own data in the next step.

Things to look out for

- Children may not label their bar charts fully.
- Children may struggle to draw bars that lie between two values on a scale.
- Children may need support to choose an appropriate scale.

Key questions

- What is the same and what is different about a pictogram and a bar chart?
- What is the data showing?
- What equipment do you need to draw a bar chart?
- Which set of data are you going to put on the vertical/ horizontal axis?
- What scale do you think is best to use?
- How can you work out the height of each bar?
- How are you going to ensure that your chart is accurate?

Possible sentence stems

- The greatest value is \qquad
I will mark the vertical axis in \qquad _s.
- The top of the bar should line up with \qquad

National Curriculum links

- Interpret and present data using bar charts, pictograms and tables
- Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables

Draw bar charts

Key learning

- The table shows children's favourite colours.

Colour	red	yellow	pink	green	orange
Number	9	5	7	4	3

Complete the bar chart to show the information in the table.

- Use the information from the pictogram to draw a bar chart.

Group	Number of cupcakes eaten
1	0
2	0
3	0
4	0

- The table shows how children in Year 3 travel to school

Transport	walk	car	bus	bicycle	train
Number	18	10	13	9	2

Draw a bar chart to show the information.
Put the type of transport on the horizontal axis and the number of children on the vertical axis.

Use a scale of 0 to 20 going up in 2 s .

- The tally chart shows the number of children in each sports club.

Sport	Tally	Total
football	HH HH HH	15
tennis	HH HH ///	
rugby	HH HH HH //	
cricket	HH HH //	
basketball	HH ///	

Draw a bar chart to show the data.

Draw bar charts

Reasoning and problem solving

The table shows how many skips some children did in 30 seconds.

Child	Number of skips in 30 seconds
Aisha	12
Huan	15
Scott	17
Esther	8

Would it be more suitable to show this information using a bar chart or a pictogram?
Explain your choice.

Tiny has drawn a bar chart to show the information in the table.

Favourite ice cream flavour	Number
strawberry	20
vanilla	28
chocolate	38
mint	15
lemon	18

Discuss as a class.

What mistakes has Tiny made?

Compare answers as a class.

Notes and guidance

In this small step, children are encouraged to propose possible topics to investigate, carry out their own data collection and use the data to construct pictograms and bar charts. They need to consider what question(s) they will ask and how they will record responses (for example, using tallies) before representing the data as bar charts or pictograms.

When constructing pictograms, children need to think carefully about the key they are going to use, based on the numbers in their data collection. They then need to choose a suitable symbol that is easy to replicate and can be used to show fractions if necessary.

When constructing bar charts, children need to think carefully about the range of data collected and the appropriate scale to use.
Further challenge could be added by asking children to write accompanying questions for a partner to answer.

Things to look out for

- Children may need a reminder of how to use tallies.
- When constructing pictograms and bar charts, children may need reminders of all the features, such as key, symbols and scales.

Key questions

- What are you collecting data about?
- Who are you going to ask?
- What question(s) are you going to ask?
- How can you record the answers to your questions?
- How do you use tally marks?
- What type of chart could you draw?
- What can you find out from the information you have collected?

Possible sentence stems

- The greatest value is \qquad
I will mark the vertical axis in \qquad s.
- One symbol represents \qquad items, so \qquad symbols represent \qquad items.

National Curriculum links

- Interpret and present data using bar charts, pictograms and tables
- Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables

Collect and represent data

Key learning

- Use the tally chart to collect information about how children in your class get to school.

Travel to school	Tally	Total
walk		
car		
bus		
bicycle		
other		

Show your results as a pictogram.

- Use the tally chart to collect information about people's favourite fruit.

Fruit	Tally	Total
apple		
orange		
banana		
grapes		
other		

[^0]Investigate surveys that involve counting amounts of things.

Examples could include but are not limited to:

- the number of cars, lorries, vans or buses that pass the window every 1/2/5/10 minutes
- the number of goals different teams score

Ask children to collect the data in a table and then choose the best way to represent the data.

Investigate surveys that involve asking for preferences, for example sport, types of film or ice cream flavours.

Ask children to collect the data in a table and then choose the best way to represent the data.

Ask children to suggest other topics that they could collect and represent information about.

Collect and represent data

Reasoning and problem solving

Max and Jo are gathering data to draw a bar chart.

They have decided to ask the children in their class how old they are.
Why might this not be a suitable question to draw a bar chart?
What would be a better way to compare children's ages?

Children work in pairs to collect data on a topic of their choice.
One partner shows the information in a bar chart and the other draws a pictogram.

Ask children which is the better representation for this data?
Would it be different if they collected data about a different topic?

Eva and Mo have been investigating how many people attend the park run each Saturday at their local park.

Ask the month of their birthday.

Compare answers as a class.

How could they show this information?

For example, they could have separate bar charts for adults and children, and for boys and girls.

Two-way tables

Notes and guidance

In this small step, children interpret information from simple two-way tables.

It is useful for children to spend time understanding how this type of table works, considering each row and column in turn, before answering specific questions about it. As with the previous steps on reading pictograms and bar charts, time spent asking, "What can you see?", "What do you know already?" and "What could you find out?" supports children's understanding of the context in greater depth.

Once they are confident in how the tables work and can identify which cell shows what information, children progress to using their calculation skills and understanding of the context to answer one- and two-step problems. Encourage children to pose additional questions of the form "How many more/fewer...?"

Things to look out for

- Children may confuse the information shown in the rows and the columns of the table.
- Children may add all the values in the cells together to find the overall total, which will lead to an incorrect answer that is double the actual total.

Key questions

- What is the information in the table showing?
- What is shown in the rows?
- What is shown in the columns?
- What can you find out from the table?
- Which cell shows you the number of \qquad ?
- If you want to know how many more/fewer \qquad which cells do you need to look at?

What calculation do you need to do?

- How can you find the total number of \qquad ?

Possible sentence stems

- The information in the rows tells me ...
- The information in the columns tells me ...
- Where the rows and columns meet tells me ...

National Curriculum links

- Interpret and present data using bar charts, pictograms and tables
- Solve one-step and two-step questions using information presented in scaled bar charts and pictograms and tables

Two-way tables

Key learning

- Here is a two-way table showing children's ages in Year 3

	Girls	Boys
Age 7	8	5
Age 8	10	7

- How many girls are 8 years old?
- How many boys are 7 years old?
- How many children are 8 years old?
- How many boys are there?
- How many more girls are there than boys?

What other questions could you ask?
Create a table showing the ages of the children in your class.

- Complete the two-way table.

	Girls	Boys	Total
Glasses	12	9	
No glasses	15	14	
Total			

How did you work out the total number of children?

- Children in Year 3 and Year 4 were asked if they preferred strawberry- or chocolate-flavoured ice cream.

The table shows the results.

	Year 3	Year 4
Strawberry	17	12
Chocolate	10	15

- How many Year 3 children prefer chocolate?
- Which year group likes chocolate more?
- How many children are there in Year 4?
- How many children altogether prefer strawberry?
- How many fewer children altogether prefer chocolate to strawberry?
- The table shows how many children in two classes prefer football or tennis.

	Class 3A	Class 3B
Football	25	15
Tennis	5	12

What can you find out?

Two-way tables

Reasoning and problem solving

Tiny creates a table to show how many boys and girls took part in after-school clubs last week.

	Boys	Girls
Monday	1	9
Tuesday	8	2
Wednesday	3	1
Thursday	8	8
Friday	9	7

Is Tiny correct?
Explain your answer.

Jo and Max are playing a game.
They each have two turns at the game and record their scores in a table.

	1st turn	2nd turn
Jo		
Max	34	

Altogether, Jo and Max scored 140 points. Complete the table.

Jo: 27, 43
Max: 34, 36

[^0]: How could you show your results as a bar chart?

